[This question paper contains 2 printed pages.]

• :	7115	F-6	Your Roll No
:	2351603		
:	Differential Equation	ons – III	
:	B.Sc. (Hons.) Ma	thematics	(Erstwhile FYUP)
:	VI		
	: : :		 : 2351603 : Differential Equations – III : B.Sc. (Hons.) Mathematics

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. There are three sections in this question paper.
- 3. Section A is compulsory.
- 4. Attempt any two questions from each Section B and C.

SECTION A

(Attempt all questions)

1. Find the general solution in powers of x of the differential equation (10)

$$(x^2 - 4)y'' + 3xy' + y = 0$$

Use the method of Frobenius to find the Frobenius series solutions of the differential equation (10)

$$\mathbf{x}\mathbf{y}'' + 2\mathbf{y}' + \mathbf{x}\mathbf{y} = \mathbf{0}.$$

3. Find the Fourier transform of

(a)
$$f(x) = \exp(-ax^2)$$
,

(b) $f(x) = \exp(-a|x|)$,

where a is a positive constant.

(8)

P.T.O.

4. Show that the solution of the Dirichlet problem, if it exists, is unique.

SECTION B

(Attempt any two questions)

- 5. Find the regular solution of Bessel's equation of first kind of order 0. (10)
- 6. State and prove the maximum principle (for a harmonic function on a bounded domain in the plane). (10)
- 7. State and prove Sturm Separation Theorem. Use it to show that between any two consecutive zeros of sin(2t) + cos(2t) there is precisely one zero of sin(2t) cos(2t). (10)

SECTION C

(Attempt any two questions)

8. Find the solution of the Dirichlet problem in the half plane y > 0

 $\begin{array}{ll} u_{xx}\,+\,u_{yy}\,=\,0, & -\infty\,<\,x\,<\,\infty, & y\,>\,0\\ \\ u(x,0)\,=\,f(x), & -\infty\,<\,x\,<\,\infty, \end{array}$

u and u vanish as $|x| \to \infty$, and u is bounded as $y \to \infty$. (10)

- Define the convolution of the two functions f and g over (-∞, ∞). State and prove the convolution theorem. (10)
- 10. (a) Let f and g be two solution of

7115

$$\frac{\mathrm{d}}{\mathrm{dt}}\left[P\left(t\right)\frac{\mathrm{dx}}{\mathrm{dt}}\right] + Q\left(t\right) = 0 \qquad (*)$$

such that f and g have a common zero on $a \le t \le b$. Show that f and g are linearly dependent on $a \le t \le b$.

(b) Let f and g be nontrivial linearly dependent solutions of equation (*) mentioned in part (a) on a ≤ t ≤ b. Suppose f(t₀) = 0, where a ≤ to ≤ b. Show that g(t₀) = 0.

(7)

эħ

(3500)

m,