[This question paper contains 4 printed pages.]

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\$

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question $\mathbf{1}$. paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.

1. (a) Define a Metric Space. Let $X=\mathbb{R}^2$, for $x=(x_1, x_2) \in \mathbb{R}^2$, $y=(y_1, y_2) \in \mathbb{R}^2$,

let $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$. Show that (X, d) is a metric space. $(6\frac{1}{2})$

(b) Let (X, d) be a metric space. Define $d^* \colon X \times X \to \mathbb{R}$ by

$$
d^*(x,y) = \min(1,d(x,y))
$$

 $(6\frac{1}{2})$ for all $x, y \in X$. Show that (X,d^*) is a metric space.

P.T.O.

- (c) Define a complete metric space. Show that the metric space $(C[a,b],d)$ is complete, where $C[a,b]$ is the set of all continuous real-valued functions on [a,b] and d(f, g) = sup{ $|f(x) - g(x)|$: a $\le x \le b$ }, for all f, $g \in C[a,b]$. (6¹/₂)
- 2. (a) Let (X, d) be a metric space. Let A be a subset of X. Define Interior of A, Int (A) . Show that Int (A) is an open subset of A that contains every open subset of A. $(6\frac{1}{2})$
	- (b) Let (X,d) be a metric space and F be a subset of X. Define limit point of F. Show that the set of all limit points of F, namely F', is a closed subset of (X,d) . $(6\frac{1}{2})$
	- (c) Let (X,d) be a metric space. Show that if (X,d) is complete then for every nested sequence ${F_n}$ of non-empty closed subsets of X, where $d(F_n) \to 0$ as $n \to \infty$, the intersection $\bigcap_{n=1}^{\infty} F_n$ contains one and only one point. $(6\frac{1}{2})$
- (a) Let (X,d) be a metric space and F be a subset of X. Then show that the following statements are equivalent 3.
	- (i) $x \in \overline{F}$
	- (ii) $S(x, \varepsilon) \cap F \neq \phi$ for every open ball $S(x, \varepsilon)$ centred at x
	- (iii) there exists an infinite sequence $\{x_n\}$ of points (not necessarily distinct) of F such that $x_n \to x$. (6¹/₂)

 $\overline{}$

(b) Show that in any metric space (X,d) each open ball is an open set. Is the converse true ? Justify. $(6\frac{1}{2})$

- (c) Let Y be ^a subspace of a metric space (X,d). Show that every subset of Y that is open in Y is also open in X if and only if Y is open in X. $(6\frac{1}{2})$
- 4. (a) If A is a subset of a metric space (X,d) then show that $d(A) = d(\overline{A})$, where $d(A)$ denotes the diameter of the set A. (5)
	- (b) Let (X,d) and (Y,d^*) be metric spaces. Show that a mapping $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(G)$ is open in X for every open subset G of Y. (5)
	- (c) Let (X,d) be a complete metric space and Y be a closed subset of X. Show that (Y, d_y) is complete, where d_y is the restriction of d to $Y \times Y$. (5)
- (a) Let A and B be disjoint closed subsets of a metric space (X,d) . Then show that there is a continuous real-valued function f on X such that $f(x) = 0$ for all $x \in A$, $= f(x) = 1$ for all $x \in B$ and $0 \le f(x) \le 1$ for all $x \in X.$ (6¹/₂) 5
	- (b) State and prove contraction mapping principle. $(6\frac{1}{2})$
	- (c) Define discrete two point space, (X_0, d_0) . Let (X, d) be a metric space. Show that the following statements are equivalent :
		- (i) (X,d) is disconnected
		- (ii) there exists a continuous mapping of (X,d) onto (X_0,d_0) . (6¹/₂)
- (a) Let (\mathbb{R}, d) be the space of all real numbers with the usual metric. Show that every connected subset of $\mathbb R$ is an interval. (6¹/₂) 6

P.T.O

- (b) Let (X,d) be a metric space and Y be a subset of X. Show that if Y is a compact subset of (X,d) then Y is bounded. Is the converse true? $(6\frac{1}{2})$ Justify.
- (c) Let f be a continuous function from a compact metric space (X,d) into an arbitrary metric space (Y,d^*) . Show that f is uniformly continuous on X. $(6^{1/2})$