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l. (a) Define a Metric Space. Let X=R'z, forx=(x,,xr) e R',y= (y,, y,) e R"

let d(x, y) = Show that (X, d) is a metric

(6k)space.

(b) Let (X, d) be a metric space. Define d*: X x X + R by

d*(x,y) : min( I,d(x,y))

(6Vz)

(*, - y,)' * (^, - y,)'

for alI x, y e X. Show that (X,d') is a metric space.

P.T.O.
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(c)

2

Detine a complete metric space. Show that the metric space (C[a,b],d)
complete, where CIa,b] is the set of all continuous real_r,aluedls

2

functions on [a,bj and d(l',8) = sup{lf(x) _ g(x)l: a < x < bf , tbr all
f, g e C[a,b] (6t/z)

(a) Let (X, d) be a metric space. Let A be a subset of X. Detine Interior of A,
Int (A). Show that Int (A) is an open subset ofA that conrains every open
subset of A. 

$yr)

(b) Let (X,d) be a metric space and F be a subset of X. Define limit point of
F. Show that the set of all limit points of F, namely F,, is a closed subset
of (X,d). 

@,/,)

(c) Let (X,d) be a metric space. Show that if (X,d) is complete lhen for
every nested sequence {F,,} of non-empty closed subsets of X, where

d(F,,) -+ 0 as n -; "o, the intersection 0 ]=,L contains one and only one

point. (6Y,)

(a) Let (X,d) be a metric space and F be a subset of X. Then show that the
following statements are equivalent

(i) x eF

(ii) S(x, e) n F * { for every open ball S(x, e) centred at x

(iii) there exists an infinite sequence {x.} ofpoints (not necessarily distinct)
of F such that x -+ x. (6',/,)

(b) Show that in any metric space (X,d) each open ball is an open set. Is the

converse true ? Justify. 6%)

J
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(c) Let Y be a

of Y that is

X.

-t

subspace of a metric space

open in Y is also open in

(X,d). Show that every subset

X if and only if Y is open in

(6%)

1 (a) If A is a subset of a metric space (X,d) then show that d(A) = d1A1, where

d(A) denotes the diameter of the set A. (5)

(b) Let (X,d) and (Y,d') be metric spaces. Show that a mapping f : X --+ y
is continuous il and only if f r(G) is open in X for every open subset G

ofY. (5)

(c) Let (X,d) be a complete metric space and Y be a closed subset of X. Show

that (Y,dr) is complete, where d" is the resrriction of d to y x y. (5)

(a) Let A and B be disjoint closed subsets of a metric space (X,d). Then

show that there is a continuous real-valued function f on X such that

f(x) = 0 forall x e A, : f(x) = I for all x e B and 0 < f(x) < I for all

x e X. $,/z)

(b) State and prove contraction mapping principle (6',h)

(c) Define discrete two point space, (Xo,do). Let (X,d) be a metric space. Show

that the following statements are equivalent :

(i) (X,d) is disconnected

(ii) there exists a continuous mapping of (X,d) onto (Xo,dr). (6'/,\

(a) Let (R,d) be the space ofall real numbers with the usual metric. Show that

every connected subset of R is an interval. (6Vz)

5

6

P.T.O



7 Ltl 4

a metric space and Y be a subset

subset of (X,d) then Y is bounded

ol X. Show that if Y
ls the converse true ?

(6V,\

(b) Let (x,d) be

is a compact

Justi$r.

(c) Let f be a continuous function from a compact metric space (X,d)

into an arbitrary metric space (ld'). Show that f is uniformly continuous

on X. (6'/z)

(l500)


