[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	7114	F-6	Your Roll No
Unique Paper Code	: 2351602 Paper Code : DC-I			
Name of the Paper	: ANALYSIS IV (Metric Spaces)			
Name of the Course	: B.Sc. (Hons.) Mathematics (Erstwhile FYUP)			
Semester		VI		
				Marine Marks : 75

Duration: 3 Hours

when have

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.

1. (a) Define a Metric Space. Let $X = \mathbb{R}^2$, for $x = (x_1, x_2) \in \mathbb{R}^2$, $y = (y_1, y_2) \in \mathbb{R}^2$,

let $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$. Show that (X, d) is a metric space. (6¹/₂)

(b) Let (X, d) be a metric space. Define $d^*: X \times X \to \mathbb{R}$ by

$$d^*(x,y) = \min(1,d(x,y))$$

for all $x, y \in X$. Show that (X,d^*) is a metric space. (6¹/₂)

P.T.O.

- (c) Define a complete metric space. Show that the metric space (C[a,b],d) is complete, where C[a,b] is the set of all continuous real-valued functions on [a,b] and d(f, g) = sup{|f(x) g(x)|: a ≤ x ≤ b}, for all f, g ∈ C[a,b].
- (a) Let (X, d) be a metric space. Let A be a subset of X. Define Interior of A, Int (A). Show that Int (A) is an open subset of A that contains every open subset of A.
 - (b) Let (X,d) be a metric space and F be a subset of X. Define limit point of F. Show that the set of all limit points of F, namely F', is a closed subset of (X,d).
 - (c) Let (X,d) be a metric space. Show that if (X,d) is complete then for every nested sequence {F_n} of non-empty closed subsets of X, where d(F_n) → 0 as n → ∞, the intersection ⋂[∞]_{n=1} F_n contains one and only one point.
- 3. (a) Let (X,d) be a metric space and F be a subset of X. Then show that the following statements are equivalent
 - (i) $x \in \overline{F}$
 - (ii) $S(x, \varepsilon) \cap F \neq \phi$ for every open ball $S(x, \varepsilon)$ centred at x
 - (iii) there exists an infinite sequence $\{x_n\}$ of points (not necessarily distinct) of F such that $x_n \rightarrow x$. (6¹/₂)

1

(b) Show that in any metric space (X,d) each open ball is an open set. Is the converse true ? Justify.
(6¹/₂)

- (c) Let Y be a subspace of a metric space (X,d). Show that every subset of Y that is open in Y is also open in X if and only if Y is open in X. (6¹/₂)
- 4. (a) If A is a subset of a metric space (X,d) then show that d(A) = d(Ā), where d(A) denotes the diameter of the set A.
 (5)
 - (b) Let (X,d) and (Y,d*) be metric spaces. Show that a mapping f: X → Y is continuous if and only if f⁻¹(G) is open in X for every open subset G of Y.
 - (c) Let (X,d) be a complete metric space and Y be a closed subset of X. Show that (Y,d_y) is complete, where d_y is the restriction of d to $Y \times Y$. (5)
- 5. (a) Let A and B be disjoint closed subsets of a metric space (X,d). Then show that there is a continuous real-valued function f on X such that f(x) = 0 for all x ∈ A, = f(x) = 1 for all x ∈ B and 0 ≤ f(x) ≤ 1 for all x ∈ X.
 - (b) State and prove contraction mapping principle. (6¹/₂)
 - (c) Define discrete two point space, (X_0,d_0) . Let (X,d) be a metric space. Show that the following statements are equivalent :
 - (i) (X,d) is disconnected
 - (ii) there exists a continuous mapping of (X,d) onto (X_0,d_0) . $(6\frac{1}{2})$
- 6. (a) Let (ℝ,d) be the space of all real numbers with the usual metric. Show that every connected subset of ℝ is an interval. (6¹/₂)

P.T.O.

- (b) Let (X,d) be a metric space and Y be a subset of X. Show that if Y is a compact subset of (X,d) then Y is bounded. Is the converse true ? Justify.
- (c) Let f be a continuous function from a compact metric space (X,d) into an arbitrary metric space (Y,d*). Show that f is uniformly continuous on X.

(3500)