[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 7113F-6Your Roll No.....Unique Paper Code: 2351601 (DC - I)Name of the Paper: Algebra - V (Ring Theory and Linear Algebra II)Name of the Course: B.Sc. (Hons.) Mathematics (Erstwhile FYUP)Semester: VI

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any two parts from each question.
- 1. (a) If F is a field, then prove that F[x] is a principal ideal domain.
 - (b) Let R be a commutative ring with unity. If I is a prime ideal of R, then prove that I[x] is a prime ideal of R[x].
 - (c) Let F be a field and $p(x) \in F[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in F[x] if and only if p(x) is irreducible over F. (6.5,6.5,6.5)
- (a) (i) Let F be a field and f(x) ∈ F[x], where deg f(x) = 2 or 3. Prove that f(x) is reducible over F if and only if f(x) has zero in F.
 - (ii) Prove that, for every positive integer n, there are infinitely many polynomials of degree n in Z[x] that are irreducible over Q.
 - (b) Define Euclidean domain. Prove that every Euclidean domain is a principal ideal domain.

10/5/16

- (c) Prove that $Z\left[\sqrt{-5}\right]$ is not a unique factorization domain. (4+2,6,6)
- (a) Let V be a finite dimensional vector space over a field F and V** be the double dual of V. Prove that V is isomorphic to V**.
 - (i) Define the annihilator S⁰ of subset S of a finite dimensional vector space V(F) and for subspaces W₁ and W₂ of V, show that (W₁ + W₂)⁰ = W₁⁰ ∩ W₂⁰.
 - (ii) Let T be an invertible linear operator on a finite dimensional vector space V(F). Prove that a scalar λ is an eigenvalue of T if and only if λ⁻¹ is an eigenvalue of T⁻¹.
 - (c) Let T be a linear operator on $P_{1}(R)$ defined by

$$T(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^{2}.$$

Test T for diagonalizability and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix. (6.5,3.5+3,6.5)

4. (a) Let T be a linear operator on R^4 defined by

T(a, b, c, d) = (a + b + 2c - d, b + d, 2c - d, c + d)

and let W = {(t, s, 0, 0): $t, s \in R$ } be a subspace of R⁴. Show that

- (i) W is a T invariant subspace of R^4 .
- (ii) the characteristic polynomial of T_w divides the characteristic polynomial of T.
- (b) Let T be a linear operator on a finite dimensional vector space V over a field F and λ₁, λ₂,...,λ_k be the distinct eigenvalues of T. If T is diagonalizable, then show that the minimal polynomial of T is of the form p(t) = (t λ₁)(t λ₂) ... (t λ_k).

7113

(c) Let T be a linear operator on a finite dimensional vector space and p(t) be the minimal polynomial of T. If T is invertible and $p(t) = t^n + a_{n-1}t^{n-1} + ...$

+
$$a_1 t + a_0$$
, prove that $a_0 \neq 0$ and $T^{-1} = \frac{-1}{a_0} (T^{n-1} + a_{n-1} T^{n-2} + \dots + a_2 T + a_1 I)$.
(2+4,6,6)

- 5. (a) Let $V = P_3(R)$ with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t)dt$ and consider the subspace $P_2(R)$ of V with the standard basis $\{1, x, x^2\}$. Use Gram Scmidth process to obtain an orthonormal basis of $P_2(R)$. Also, compute the orthogonal projection of $f(x) = x^3$ on $P_2(R)$.
 - (b) Let V be a finite dimensional inner product space and W be a subspace of V. Prove that V = W ⊕ W[⊥] where W[⊥] denotes the orthogonal complement of W.
 - (c) Prove that, if V is an inner product space, then

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{V}$$

Verify the inequality for vectors x = (1, 2i, 1 + i) and y = (5 + i, 2, 3) in inner product space \mathbb{C}^3 . (6.5,6.5,6.5)

6. (a) Find the minimal solution of the following system of linear equations :

x + 2y + z = 4x - y + 2y = -11x + 5y = 19

(b) Let T be a linear operator on a finite dimensional inner product space V. Suppose that the characteristic polynomial of T splits. Then prove that there exists an orthonormal basis β for V such that the matrix [T]_β is upper triangular.

$$T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1).$$

Evaluate T* at the vector z = (3 - i, 1 + 2i).

(ii) Let T be a linear operator on a complex inner product space V with an adjoint T*. Prove that if T is self – adjoint, then (Tx, x) is real for all x ∈ V.
(6,6,4+2)