		" 3[12 18 (M)
W. Star	(4) 47	This question paper contains 4+2 printed pages]
(b)	Evaluate $(+80) + (+90)$ and $(-80) + (-90)$ with binary numbers in signed-2's complement representation. Use	Roll No. S. No. of Question Paper : 47
	eight bits to accommodate each number together with its	Unique Paper Code : 32341102 I
1140	sign. 3+3=6	Name of the Paper : Computer System Architecture
		Name of the Course : B.Sc. (H) Computer Science
3. (<i>a</i>)	What is an interrupt cycle ? Draw a flowchart depicting	Semester : I
	the interrupt cycle. 5	Duration : 3 Hours Maximum Marks : 75
(b)	What is addressing mode ? An instruction is stored at	(Write your Roll No. on the top immediately on receipt of this question paper.)
	location 500 with its address field at location 501. The	Question No. 1 is compulsory.
and and the	address field has the value 600. The content of a	Attempt any 4 questions out of Question Nos. 2 to 7. Parts of a question must be answered together
	processor register R1 is 300. Evaluate the effective	C
	address (EA) if the addressing mode of the	1. (a) Convert the following numbers with the indicated bases
tada serva	instruction is : 5	to decimal : 2 (i) (121121)
	(1) Direct	(<i>ii</i>) (4310) ₅ .
	(ii) Relative	(b) Given the Boolean expression $F = x'y + xyz'$, show that
	(iii) Immediate.	F.F' = 0. 2

(2)	47			(3). 47
Draw a block diagram and function table of 4-to-	. 0	(/)	Determine the number of clock cycles that it takes to	
multiplexer.	2+2=4		1. Section	process 150 tasks in a six-segment pipeline. 2
Simplify the following Boolean function using a	three-	C o	List three uses of an I/O processor. 3	
variable Karnaugh map :	4		(4)	What is Content Addressable Memory (CAM) ?
$F(x, y, z) = \Sigma(1, 2, 3, 6, 7).$	3		(^)	
Differentiate between a direct and an indirect address				Explain its hardware organization with the help of a block
instruction. How many references to memory are n	needed			diagram. 1+3=4
for each type of instruction to bring an operand	into a		(1)	Write micro-operations for implementing the following
processor register ?	2+2=4	 C 	t operations to	memory reference instructions :
Explain the purpose of Auto-increment and	Auto-			(<i>i</i>) BUN
decrement addressing modes.	2			(<i>ii</i>) STA.
Write two instructions needed in the basic computer in			2. (a)	Explain why each of the following register transfer
order to set the extended bit E to 1. 2		C		
				language statements cannot be directly executed in a basic
specified to the processor in terms of SELA, SELB, SELD				computer. Also specify the right sequence of micro-
and OPR to implement the following micro-operat	tion :			operations that will be required to perform these
$R1 \leftarrow R2 - R3.$				operations : 2+2=4
Where the binary code for OPR is 00101, and the	e three	•		(i) $IR \leftarrow M[PC]$
bit binary code for the selecting the register corres	sponds			(<i>ii</i>) AC \leftarrow AC + TR.
to the register number.	2			a state of the second

(c)

(d)

.

(e)

(1)

(g)

(*h*)

P.T.O.

(a) Design full adder and derive the Boolean expressions for sum and carry outputs of the full adder.

47

1,400

(6)

- (b) A computer uses a memory unit with 1024K words of 32 bits each. A binary instruction code is stored in one word of memory. The instruction has 4 parts : an indirect bit, an operation code, a register code part to specify one of 128 registers and an address part : 4
 - (i) How many bits are there in the data and address lines ?
 - (ii) Draw the instruction word format and compute the number of bits required for each part.

47

7.

6

4. (a) Explain the function of the following registers in a basic
 computer : 5

- (*i*) PC
- (ii) AR
- (iii) IR
- (iv) AC
- (v) DR.
- (b) Show the step-by-step process of multiplying two binary numbers using Booth's Algorithm. Assume multiplicand = 01111 and multiplier = 10011. 5
- (a) Draw the block diagram of a Direct Memory Access
 (DMA) controller and explain its working. 3+3=6
- (b) Convert (215), to :

5.

6.

- (i) 12-bit Binary Coded Octal
- (ii) 12-bit Binary Coded Hexadecimal.
- (a) Draw a space-time diagram for a four-segment pipeline showing the time it takes to process six tasks. 4+1=5
 (b) Draw the flowchart for programmed I/O mode of data transfer and explain its working. 2+3=5

2+2=4