Obtain harmonic mean for beta distribution of second 8.(a) kind.

If X ~Bin (n, p), find mode of the distribution. (6.6) (b)

o with the feet the needern variable X follow Nation of the tree

100

.

S.

This question paper contains 4 printed pages

Your Roll No.

Evening

	S. No. of Paper	: 8203	HC
	Unique paper code	: 62371201	
	Name of the paper	: Statistical Methodology	
	Name of course	: B.A. (Prog.) Statistics	
	Semester	: II (
C	Duration	: 3 hours	
	Maximum marks	: 75	

(Write your Roll No. on the top immediately

on receipt of this question paper.)

Attempt six questions in all, including Q. No. 1 which is compulsory. Simple calculator can be used.

1.(a) A random variable X has the following probability function:

x	-2	-1	0	1	2	3
P(X=x)	0.1	k	0.2	3 <i>k</i>	2 <i>k</i>	0.3

Find k, $P(x \le 2)$, and $P(-2 \le x \le 2)$

- (b) Let X denote the number of successes preceding the first failure. Find E(X).
- State whether the following statement is true or false: (c) Mean of binomial distribution is 2 and variance is 6. Justify your answer.

P. T. O.

- (d) Find the r^{th} moment about origin for beta distribution of first kind.
- (c) A Poisson variate X is such that P(X=2) = 9P(X=4) + 90P(X=6). Find its mean and variance. (3,3,3,3,3)

10

- 2.(a) Let X be a random variable with probability density function $f(x) = kx^2(1-x^3)$, $0 \le x \le 1$, where k is a constant. Find the value of k, mean and variance of X.
 - (b) If X is a binomial variate with parameters n and p, show that:

$$\mu_{r+1} = pq[nr\mu_{r-1} + \frac{d\mu_r}{dp}]; r = 1, 2, 3...$$
(6,6)

3.(a) Let X and Y be two random variables with the following joint probability mass function:

Х	-1	0	1	1
Y	(203 - 6.02)	N. GU	R CREW &	
-1	0	0.1	0.1	1
0	0.2	0.1 0.2	0.2	
1	0	0.1	0.1	

(i)Find the variance of 2X.

- (ii)Given that Y=0, what is the conditional probability distribution of X?
- (b) Show that Poisson distribution is a limiting case of negative binomial distribution. (6,6)

VERENUOV MARINE

- 4.(a) If X and Y are independent Poisson variates, show that the conditional distribution of X given X+Y, is binomial.
 - (b) State and prove Chebyshev's inequality. (6,6)
- 5.(a) Examine whether the weak law of large numbers holds for the sequence {X_k} of independent random variables defined as follows:

$$P(X_k = \pm 2^k) = 2^{-(2k+1)}, P(X_k = 0) = 1 - 2^{-2k}$$

- (b) Define hypergeometric distribution. Obtain its mean and variance. (6,6)
- 6.(a) Let the random variable X follow N(μ , σ^2). Find its m.g.f. and hence deduce that all odd order central moments vanish and $\mu_{2n} = 1.3.5 \dots (2n-1) \sigma^{2n}$.
 - (b) Prove that for the normal distribution, quartile deviation, mean deviation from mean and standard deviation respectively are approximately in the ratio 10:12:15.
- 7.(a) If X is a Gamma Variate with mean *n*, find the m.g.f. of $z = \frac{X-n}{\sqrt{n}}$ and show that it approaches exp $(t^2/2)$ as *n* tends to infinity. Also interpret the result.
 - (b) Compute m.g.f. for exponential distribution. Hence, obtain its mean and variance. (6,6)

P. T. O.