15/05/2018 (Evening)

	[This question paper contains 7 printed pages]						
	Your I	Roll No.	:				
٩	Sl. No	. of Q. Paper	: 9650	нс			
C	Unique	Paper Code	:62357602				
	Name of the Course : B.A.(Programme) Mathematics : DSE-4						
	Name of	of the Paper	: Numerical Analysis				
	Semes	ter	: VI				
	Time	: 3 Hours	Maxin	num Marks : 75			
	Instru	ctions for Ca	ndidates :				
af ₁₀	(a) Write your Roll No. on the top immediately on receipt of this question paper.						
	(b) All six questions are compulsory.						
	(c) Attempt any two parts from each question.						
C	(d) Use of non-programmable scien calculator is allowed.						
1.	1. (a)	Perform thre	e iterations	of Secant method			
		to obtain a re	pot of the eq	uation 6			

Ø

 $\mathcal{R}_{\mathbf{k}}$

C

E)

¥.

C

with initial approximation $x_0 = 2$, $x_1 = 3$.

P.T.O.

9650

(b) Perform four iterations of bisection method to obtain the root of the equation

> $x^{3} - 3x^{2} - 0.09x + 0.27 = 0$ in the interval [0,1].

- (c) If true value is 0.000310698 and approximated value is 0.0049065, then find the absolute and the relative error. Differentiate between round-off error and truncation error.
- **2.** (a) Perform two iterations of Newton's method to solve the non-linear system of equations

6

6

.

6

€).

R.

 $x^2y + y^3 = 10$ $xy^2 - x^2 = 3$

with initial approximation $(x_0, y_0) = (0.8, 2.2)$.

(b) Perform three iterations of Regula Falsi method to find the root of the equation

2

 $f(x) = x^3 - 2 = 0$

in the interval [1,2].

(c) Apply finite difference method (second order) to solve the given problem :

6.5

y'' = y + x, y(0) = 0, y(1) = 0,

7

with h = 1/4.

(b) Find integral of $I = \int_{0}^{2} e^{-x^{2}} dx$ using Simpson's rule and Trapezoidal rule. (6.5)

()

0

67

£

ĸ

(c) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using composite Trapezoidal rule and Romberg integration with h=1 and h=1/2 only. 6.5

- 6. (a) Employ the classical fourth order RK method to integrate $y' = 4e^{0.8t} - 0.5y$, y(0)=2 from t=0 to 1 using a step size of 1. 6.5
 - (b) Apply Euler's method to approximate the solution of

$$y' = x + y, \quad y(0) = 2,$$
 6.5

and calculate y(1) by using h=0.5.

- (c) Perform three iterations of Newton-Raphson method to obtain the cube root of 17 with initial approximation $x_0 = 2$.
- **3.** (a) Find the inverse of the following matrix using the Gauss Jordan method :

6.5

6

(b) Solve the tridiagonal system AX = b by using Gauss- Thomas algorithm.

(1)	2	0)	$\begin{pmatrix} x \end{pmatrix}$		(10)	
1	3	3	y y	=	17	
0	3	10)	$\left(z\right)$		(22)	

3

6.5

P.T.O.

6

- (c) For the following system of equations:
 - 10x + 4y 2z = 12 x - 10y - z = -105x + 2y - 10z = -3

6.5

D

61

6

A.

A

- (i) Show that Jacobi iteration scheme converges.
- (ii) Perform three iterations of Jacobi iteration scheme starting with initial vector (x, y, z) = (0, 0, 0).
- **4.** (a) For the following data, obtain the Gregory Newton backward difference polynomial.
 - x
 0.1
 0.2
 0.3
 0.4
 0.5

 f(x)
 1.40
 1.56
 1.76
 2.00
 2.28

 Also find the approximate value of f at
 - x = 0.25.

- (b) Prove the following :
 - $1 + \Delta = 1 + \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}}\delta^2$
- (c) The function f(x) = sin(x) is defined on
 [1,3]. Find Lagrange interpolating linear polynomial on intervals [1, 2] and [2,
 3]. Hence find the approximate value of f(1.5) and f(2.5).
- 5. (a) The following data for the function $f(x) = x^4$ is given (6.5)

Х	0.4	0.6	0.8
			2
f(x)	0.0256	0.1296	0.4096

Find f'(0.8) and f''(0.8) using quadratic interpolation.

5

4

P.T.O.