	5/12/18 (Brening)
(4) 1414	This question paper contains 4 printed pages]
Find the general solution of the differential equation: 6.5	Roll No.
$x^2 p + y^2 q = (x+y)z.$	S. No. of Question Paper : 1414
Find the complete integral of the differential equation : 6.5	Unique Paper Code 62357502 I
$(p^2+q^2)x^2-qz=0.$	Name of the Paper : Differential Equations
(<i>i</i>) Classify the partial differential equation as elliptic,	Die CR. AM the section + Die F 2
parabolic or hyperbolic : 2.5	Name of the Course : B.A. (Prog.) Mathematics : DSE-2
$4u_{xx} - 4u_{\bar{x}y} + 5u_{yy} = 0.$	Semester V
(<i>ii</i>) Eliminate the parameters <i>a</i> and <i>b</i> from the following	Duration : 3 Hours Maximum Marks : 75
equation to find the corresponding partial differential equation : 4	(Write your Roll No. on the top immediately on receipt of this question paper.)
$z = x + ax^2y^2 + b.$	Attempt All the questions by selecting
Find the complete integral of the equation : 6	any two parts from each question.
(p+q)(z-xp-yq)=1.	1. (a) Solve the initial value problem : 6
Eliminate the arbitrary function f from the equation	$(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0; y(1) = 2,$
z = x + y + f(xy) to find the corresponding partial	4
differential equation. 6	(b) Solve :
Find the general solution of the partial differential	$x = y + a \ln p.$
equation : 6	(c) Solve : 6
$y^2 p - xyq = x(z - 2y).$	(y + x + 5)dy - (y - x + 1)dx = 0.
4 800	P.T.O.

.

• 14

5.

(*a*)

(b)

(c)

1414

6.

(a)

(b)

(c)

(2)

(a) Solve :

$$\frac{d^3y}{dx^3} - 4\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 18y = x.$$

1414

6.5

6.5

1

€3

12

(b) Solve :

3.

2.

$$(x+3)^2 \frac{d^2 y}{dx^2} - 4(x+3)\frac{dy}{dx} + 6y = x$$

(c) Consider the following differential equation : 6.5

$$x^{3} \frac{d^{3} y}{dx^{3}} - 4x^{2} \frac{d^{2} y}{dx^{2}} + 8x \frac{dy}{dx} - 8y = 0$$

(i) Show that x, x^2 and x^4 are solution of above differential equation.

(*ii*) Show that the solutions x, x^2 and x^4 are linearly independent.

- (*iii*) Write the general solution of the above differential equation.
- (a) Using the method of variation of parameters to find the general solution of :
 6.5

$$\frac{d^2y}{dx^2} + y = \tan x$$

(b) Use the method of undetermined coefficients to find the general solution of the differential equation : 6.5

$$4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = e^x + 2\cos 2x.$$

(c) Given that y = x is a solution of the differential equation : 6.5

$$(x^{2}+1)\frac{d^{2}y}{dx^{2}}-2x\frac{dy}{dx}+2y=0.$$

Find a linearly independent solution by reducing the order and write the general solution.

$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2 + y^2}.$$

lve :

 $(y^{2} + yz)dx + (xz + z^{2})dy + (y^{2} - xy)dz = 0.$

(c) Solve :

$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0,$$

$$\frac{dy}{dt} + 5x + 3y = 0.$$

6

6

6