If α , β , γ are the roots of the equation :

$$x^3 + px^2 + qx + r = 0,$$

find the value of
$$\sum \frac{\beta^2 + \gamma^2}{\beta \gamma}$$
.

61/2

- Find the multiplicative inverse of the following congruence classes:
 - $[11]_{16}$ in Z_{16}
 - $[14]_{15}$ in Z_{15} .

61/2

Find the inverse and order of the following permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$$

and construct its associated diagram.

61/2

Prove that the following set of matrices over R is a group under matrix multiplication: 61/2

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

26/8/17 Amiday
(Brening)

This question paper contains 4+1 printed pages

Roll No.											
	1100422	NAME OF STREET	100000000000000000000000000000000000000	Company of the last	1000	10000	1111-2017	12-25 (200)	(A. J. S.	the American Special States	Service Array

S. No. of Ouestion Paper

Unique Paper Code

: 62351201

2001

GC-4

Name of the Paper

: Algebra

Name of the Course

: B.A. (Prog.) Discipline Course

Semester

: 11

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

Let V = F[a, b] be the set of all real valued functions defined (a) on the interval [a, b]. For any f and g in V, c in \mathbb{R} , we define:

$$(f \oplus g) (t) = f(t) + g(t),$$

$$(c \odot f)(t) = cf(t).$$

Prove the V is a vector space over R.

61/2

(b) Let V be the vector space \mathbb{R}^3 and let $v_1 = (1, 2, 1)$,

 $v_2 = (1, 0, 2), v_3 = (1, 1, 0).$ Do v_1, v_2, v_3 span V?

Justify.

(c) Show that the set $S = \{v_1, v_2, v_3, v_4\}$ where $v_1 = (1, 0, 1, 0), v_2 = (0, 1, -1, 2), v_3 = (0, 2, 2, 1)$ and

 $v_4 = (1, 0, 0, 1)$ is a basis for \mathbb{R}^4 .

2. (a) Find the rank of the matrix

$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 5 & -2 & 7 & 2 \\ 1 & 0 & 4 & -1 \\ 2 & 0 & 4 & -4 \end{bmatrix}$$

by reducing it to the normal form.

61/2

(b) Solve the system of equations:

61/2

4)

$$x + 3y + 2z = 0$$

$$2x - y + 3z = 0$$

$$3x - 5v + 4z = 0$$

$$x + 17y + 4z = 0.$$

(c) Determine the eigenvectors of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

3. (a) If n is positive integer, prove that :

$$(1+i\sqrt{3})^n + (1-i\sqrt{3})^n = 2^{n+1}\cos\frac{n\pi}{4}.$$

(b) Prove that:

 $128\cos^3\theta\sin^5\theta=\sin8\theta-\sin6\theta-2\sin4\theta+6\sin2\theta.$

- (c) Find all the values of $(1 + i)^{1/4}$.
- 4. (a) Form an equation whose roots are 1, -1, i, -i. $6\frac{1}{2}$
 - (b) If the sum of two roots of the equation:

$$4x^4 - 24x^3 + 31x^2 + 6x - 8 = 0$$

is zero, find all the roots of the equation.

61/2

P.T.O.

6. (a) Let $G = GL_2(R)$. Prove that:

$$D = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}, ad \neq 0 \right\}$$

is a subgroup of G.

6

(b) Prove that the set:

$$S = \{f \in R : f(a) = 0\}, \text{ where } a \in [0, 1]$$

is a subring of R.

(c) Prove that the rigid motions of a square yields the subgroup of S4. 6