6713

(a) Derive the expression for the standard error of :

4.

5.

- (i) the mean of a random sample of size n.
- (*ii*) the difference of the means of two independent random samples of size n_1 and n_2 ,
- (b) P_1 and P_2 are the (unknown) proportions of students wearing glasses in two universities A and B. To compare P_1 and P_2 , samples of size n_1 and n_2 are taken from the two populations and the number of students wearing glasses is found to be x_1 and x_2 respectively. Suggest an unbiased estimate of $P_1 - P_2$ and obtain its sampling distribution when n_1 and n_2 are large. Hence explain how to test the hypothesis H_0 : $P_1 = P_2$ against H_1 : $P_1 \neq P_2$. 6.6

Section B

(a) Obtain mean deviation about mean of *t*-distribution with*n* d.f.

 (b) If X is a Chi-square variate with n df, then prove that for large n :

 $\sqrt{2X} \sim N(\sqrt{2n}, 1)$

	This question paper contains 4+2 printed pages]
	Roll No.
¢	S. No. of Question Paper : 6713
	Unique Paper Code : 32371301 HC
C	ame of the Paper : Sampling Distribution
	Name of the Course : B.Sc. (H) Statistics
	Semester : III
	Duration : 3 Hours Maximum Marks : 75
	(Write your Roll No. on the top immediately on receipt of this question paper.)
	Question No. 1 is compulsory.
•	Attempt six questions in all by selecting
	at least two questions from each section.
	1. Attempt any <i>five</i> parts : 5×3=15
C	(a) Define convergence in distribution and convergence in
	probability and state their relations.
	(b) Discuss type-I and type-II errors and level of
(t)	significance with examples.
	(c) Decide whether the central limit theorem holds for the
	sequence of independent random variables X_k with
	distribution defined as $P(X_k = \pm k^{\alpha}) = 1/2$.
	DTO

6713.

0

3.

- (d) Show that the sum of independent Chi-square variates is also a χ^2 variate.
- (e) If $X \sim F_{2,4}$, then show that :
 - $P(X \ge 2) = 1/4.$
- (f) If $X \sim F_{m,n}$ and $Y \sim F_{n,m}$, then show that :
 - $P(X \le a) + P(X \le 1/a) = 1$ for all *a*.
- (g) In a 2 \times 3 contingency table, if N = x + y + z,
 - N' = x' + y' + z' and N = N' then show that :

$$\chi^{2} = \frac{(x-x')^{2}}{x+x'} + \frac{(y-y')^{2}}{y+y'} + \frac{(z-z')^{2}}{z+z'} \sim \chi^{2}_{2}.$$
 5×3

Section A

2.

(a) If X is a random variable and $E(X^2) < \infty$, then prove

that $P(|x| \ge a) \le E(X^2)/a^2$, for all a > 0. Use

Chebychev's inequality to show that for n > 36 the probability that in *n* throws of a fair die, the number of sixes lies between $\frac{n}{6} - \sqrt{n}$ and $\frac{n}{6} + \sqrt{n}$ is at least 31/36.

independent. Also find the distribution of $X_{(r+1)} - X_{(r)}$.

P.T.O.

6,6

(c) Show that *t*-distribution tends to normal distribution for large *n*.
4,4,4

6. (a) For a Chi-square distribution with n d.f., prove that :

$$\mu_{r+1} = 2r(\mu_r + n\mu_{r-1}), r \ge 1.$$

- Hence find β_1 and β_2 , Also discuss the limiting form of χ^2 distribution.
- (b) If $X \sim F_{m,n}$ distribution, obtain the distribution of mX when $n \rightarrow \infty$. Also obtain the mode of the F-distribution. 6,6
- (a) Prove that if $n_{\rm J} = n_2$, the median of F-distribution is at F = 1 and that the quartiles Q₁ and Q₃ satisfy the condition Q₁Q₃ = 1.

7.

8.

- (b) Discuss the *t*-test for testing the significance for the difference of two population means.
 6,6
- (a) Let X_1 , X_2 , ..., X_n be a random sample from $N(\mu, \sigma^2)$ and \overline{X} and S^2 respectively be the sample mean and sample variance. Let $X_{n+1} \sim N(\mu, \sigma^2)$, and

6713

600

assume that $X_1, X_2, \dots, X_n, X_{n+1}$ are independent. Obtain the sampling distribution of :

$$\mathbf{U} = \frac{x_{n+1} - \overline{\mathbf{X}}}{\mathbf{S}} \sqrt{\frac{n}{n+1}}.$$

- (b) If $X \sim F_{n_1, n_2}$, then show that its mean is independent of n_1 .
- (c) If X is Poisson variate with parameter λ and χ² is a Chi-square variate with 2K d.f., then prove that for all positive integers k :

$$P(X \le k - 1) = P(\chi^2 > 2\lambda).$$
 4,4,4

difference of the application of the

and the set period a set of the set of the set

organic reliable burger in has go been a look