6713 Derive the expression for the standard error of : the mean of a random sample of size n . (i) the difference of the means of two independent (ii) random samples of size n_1 and n_2 . P_1 and P_2 are the (unknown) proportions of students wearing glasses in two universities A and B. To compare P_1 and P_2 , samples of size n_1 and n_2 are taken from the two populations and the number of students wearing glasses is found to be x_1 and x_2 respectively. Suggest an unbiased estimate of $P_1 - P_2$ and obtain its sampling distribution when n_1 and n_2 are large. Hence explain how to test the hypothesis H_0 : $P_1 = P_2$ against $H_1 : P_1 \neq P_2.$ 6,6 **Section B**

4.

5.

 (a)

 (b)

Obtain mean deviation about mean of t-distribution with (a) n d.f.

If X is a Chi-square variate with n df; then prove that (b) for large n :

 $\sqrt{2X}$ ~ N($\sqrt{2n}$, 1)

P.T.O.

$$
\begin{array}{c}\n\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & \mathbf
$$

6713.

 \bullet

3.

- Show that the sum of independent Chi-square variates (d) is also a χ^2 variate.
- (e) If $X \sim F_{2,4}$, then show that :
	- $P(X > 2) = 1/4.$
- If $X \sim F_{m,n}$ and $Y \sim F_{n,m}$, then show that : \emptyset
	- $P(X \le a) + P(X \le 1/a) = 1$ for all a.
- In a 2 \times 3 contingency table, if N = x + y + z, (g)
	- $N' = x' + y' + z'$ and $N = N'$ then show that : \langle

$$
\chi^2 = \frac{(x-x')^2}{x+x'} + \frac{(y-y')^2}{y+y'} + \frac{(z-z')^2}{z+z'} - \chi^2_2.
$$
 5x3

Section A

 $\overline{2}$

If X is a random variable and $E(X^2) < \infty$, then prove (a)

that $P(|x| \ge a) \le E(X^2)/a^2$, for all $a > 0$. Use

Chebychev's inequality to show that for $n > 36$ the

probability that in n throws of a fair die, the number of sixes lies between $\frac{n}{6} - \sqrt{n}$ and $\frac{n}{6} + \sqrt{n}$ is at least 31/36.

 (3) . 6713 If X_1, X_2, \ldots, X_n are iid random variables with mean (b) μ_1 and variance σ_1^2 (finite) and $S_n = X_1 + X_2 + \dots$ + X_n , then : $\lim_{n\to\infty} P[a \leq \frac{S_n - n\mu_1}{\sigma, \sqrt{n}} \leq b] = \varphi(b) - \varphi(a)$, for $-\infty < a < b < \infty$, where $\varphi(.)$ is the distribution function of a standard normal variate. 6.6 Let $\{X_n\}$ be a sequence of mutually independent random $\left(a\right)$ variables such that $P(X_n = \pm 1) = \frac{1-2^{-n}}{2}$ and $P(X_n = 0) = 2^{-n}$. Examine whether the weak law of large numbers can be applied to the sequence $\{X_n\}$. (b) Given a random sample of size n from exponential distribution : $f(x) = \alpha e^{-\alpha x}, x \ge 0, \alpha > 0.$ Show that $X_{(r)}$ and $W_{rs} = X_{(s)} - X_{(r)}$, $r \leq s$, are

independent. Also find the distribution of $X_{(r+1)} - X_{(r)}$. 6.6

P.T.O.

Show that *t*-distribution tends to normal distribution for (c) large n. 4,4,4

 (a) For a Chi-square distribution with n d.f., prove that : 6.

$$
\mu_{r+1} = 2r(\mu_r + n\mu_{r-1}), r \ge 1.
$$

- Hence find β_1 and β_2 , Also discuss the limiting form of χ^2 distribution.
- If $X \sim F_{m,n}$ distribution, obtain the distribution of (b) mX when $n \rightarrow \infty$. Also obtain the mode of the F-distribution. 6,6
- (a) Prove that if $n_1 = n_2$, the median of F-distribution is at $F = 1$ and that the quartiles Q_1 and Q_3 satisfy the condition $Q_1Q_3 = 1$.

7.

8.

- Discuss the *t*-test for testing the significance for the (b) difference of two population means. 6,6
- Let X_1 , X_2 ,, X_n be a random sample from $\left(a\right)$ $N(\mu, \sigma^2)$ and \bar{X} and S^2 respectively be the sample mean and sample variance. Let $X_{n+1} \sim N(\mu, \sigma^2)$, and

600

assume that X_1 , X_2 ,, X_n , X_{n+1} are independent. Obtain the sampling distribution of :

$$
U = \frac{x_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}.
$$

r er ven Tus B

- If $X \sim F_{n_1, n_2}$, then show that its mean is independent (b) **Carl Link Dob** of n_1 .
- If X is Poisson variate with parameter λ and χ^2 is a (c) Chi-square variate with 2K d.f., then prove that for all positive integers k :

is the advertiser as so that the south of

sinch-namelygne aver 16 polychilds

D Nather Dealers of the Control of

alt of considering of most on gets all second.

efterne mit ad electroner va base is based a reiz

but is count was to be a monthly primer is a move

inter about perima a set of a single $\mathcal{F}=\mathcal{F}$, i.e., where

$$
P(X \le k - 1) = P(\chi^2 > 2\lambda).
$$
 4.4.4

 $\mathbb{T} \subset \mathbb{P}_1 \mathbb{C}$ and \mathbb{R}