26/11/16/2016 Morning Saturday

[This question paper contains 6 printed pages.]

Sr. No. of Question Paper: 1796GC-3Your Roll No.....Unique Paper Code: 32371101: 32371101Name of the Paper: Descriptive StatisticsName of the Course: B.Sc. (Hons.) Statistics under CBCSSemester: IDuration : 3 HoursMaximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt 6 questions in all.
- 3. Question No. 1 is compulsory.
- 4. Attempt 5 more questions selecting three questions from Section A and two from Section B.
- 5. Use of simple calculator is allowed.
- 1. Fill in the blanks :
 - (i) |x+6| + |x-4| + |x| + |x+10| + |x+3| is least for x =_____.
 - (ii) For a platykurtic distribution γ_2 is _____.
 - (iii) For a discrete distribution standard deviation is _____ than mean deviation about mean.
 - (iv) If Corr(X, Y) = 0.8, $\sigma_x = 2.5$ and $\sigma_y = 3.5$, then Var(3X-2Y) is _____.
 - (v) If X_1 , X_2 , and X_3 are three variables, then partial correlation coefficient $r_{23.1} = ----$.

1796

2

(vi) Correlation coefficient is the _____ of regression coefficients.

- (vii) The acute angle between two lines of regression is given by _____.
- (viii) In case of n attributes, the total number of ultimate class frequencies is ______ and number of positive class frequencies is ______.

(ix) If
$$P(A) = \frac{3}{4}$$
 and $P(B) = \frac{5}{8}$, then lower limit of $P(A \cap B)$ is _____.

- (x) Milk is sold at the rates of 8, 10 and 12 rupees per litre in three different months. Assuming that equal amounts were spent on milk by a family in the three months, the average price of milk is _____.
- (xi) Arithmetic mean of 100 observations is 50 and standard deviation is
 10. If 5 is subtracted from each of the observations and then it is divided by 4 then new arithmetic mean is _____ and standard deviation is _____.
- (xii) A, B and C are three mutually exclusive and exhaustive events associated with a random experiment. If P(B) = (3/2), P(A) and $P(C) = (\frac{1}{2}) P(B)$ then

P(A) is _____ and P($\overline{A} \cap \overline{B}$) is _____. (1,1,1,1,1,1,1,1,1,2,2,2)

SECTION A

- 2. (a) (i) Prove that the sum of the squares of the deviations of a set of observations is minimum when taken about mean.
 - (ii) Let r be the range and s be the standard deviation of a set of observations x₁, x₂, ..., x_n. Prove that s ≤ r.

1

(b) In a frequency table, the upper boundary of each class interval has a constant ratio to the lower boundary. Show that the geometric mean G may be expressed by the following formula :

$$\log G = x_0 + \frac{c}{N} \sum_i f_i (i-1),$$

where, x_0 is the logarithm of the mid value of the first interval and c is the logarithm of the ratio between upper and lower boundaries. (6,6)

(a) Show that in a discrete series if deviations x_i = X_i - M, are small compared with the value of the mean M so that (x/M)³ and higher powers of (x/M) are neglected,

(i)
$$H = M\left(1 - \frac{\sigma^2}{M^2}\right)$$

(ii) Mean
$$\left(\frac{1}{\sqrt{x}}\right) = \frac{1}{M} \left(1 + \frac{3\sigma^2}{8M^2}\right)$$
 approx.

where, H is the harmonic mean of the values $x_1, x_2, ..., x_n$ and σ^2 is the variance.

relation $Y = \frac{X}{aX+b}$. Derive the normal equations for fitting the given curve and estimate the constants 'a' and 'b' for a given set of n points $\{(x_i, y_i), i = 1, 2, ..., n\}.$ (7,5)

(b) Two variables X and Y are known to be related to each other by the

- 4. (a) Define Spearman's rank correlation coefficient. Let x₁, x₂, ..., x_n be the ranks of n individuals according to a character A and y₁, y₂, ..., y_n be the corresponding ranks of the individuals according to another character B. Obtain the rank correlation coefficient between them if x_i + y_i = n + 1 ∀ i = 1, 2,....n.
 - (b) X and Y are two random variables with variances σ_x^2 and σ_y^2 respectively and r is the coefficient of correlation between them. If U = X + kY and

$$V = X + \frac{\sigma_x}{\sigma_y} Y$$
, find the value of k so that U and V are uncorrelated.

5. (a) Show that
$$1 - R_{1,23}^2 = (1 - r_{12}^2)(1 - r_{13,2}^2)$$

Deduce that (ii) $R_{1,23} \ge r_{12}$

(iii) $R_{1,23}^2 = r_{12}^2 + r_{13}^2$, if $r_{23} = 0$

(iv) $1-R_{1,23}^2 = \frac{(1-\rho)(1+2\rho)}{(1+\rho)}$, provided all coefficients of

zero order are equal to ρ .

(b) Given that Y = kX + 4 and X = 4Y + 5 are the lines of regression of Y on

X and X on Y respectively, show that $0 \le k \le 1/4$. If $k = \frac{1}{16}$, find mean of two variables and the coefficient of correlation between them.

(7,5)

(6,6)

SECTION B

- (a) Four tickets marked 00, 01, 10 and 11 respectively are placed in a bag. A ticket is drawn at random five times, being replaced each time. Find the probability that the sum of the numbers on the tickets thus drawn is 23.
 - (b) If $A_1, A_2, ..., A_n$ are n independent events with $P(A_i) = 1 \frac{1}{\alpha^i}$, i = 1, 2, ..., nthen find the value of $P(A_1 \cup A_2 \cup ... \cup A_n)$.
 - (c) A problem in Statistics is given to three students A, B and C, whose chance of solving it are ¹/₂, ³/₄ and ¹/₄ respectively. What is the probability that the problem will be solved if all of them try independently. (5,3,4)
- 7. (a) State Bayes' theorem.

In answering a multiple choice test, an examinee either knows the answer or he guesses or he copies. Suppose each question has four choices. Let the probability that examinee copies the answer is 1/6 and the probability that he guesses is 1/3. The probability that his answer is correct given that he copied the answer is 1/8. Suppose an examinee answers a question correctly, what is the probability that he really knows the answer ?

(b) If
$$\frac{(A)}{N} = x$$
, $\frac{(B)}{N} = 2x$, $\frac{(C)}{N} = 3x$ and $\frac{(AB)}{N} = \frac{(BC)}{N} = \frac{(CA)}{N} = y$,

then, using the conditions of consistency of attributes show that

$$0 < y \le x \le \frac{1}{4}.$$
 (7,5)

P.T.O.

(a) Let $A_1, A_2, ..., A_n$ be the events in the domain of probability function P, such 8.

that
$$P\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} P[A_{i}]$$
. Using this relationship, prove that :

(i)
$$P\left[\bigcap_{i=1}^{n} A_{i}\right] \ge 1 - \sum_{i=1}^{n} P\left[\overline{A}_{i}\right]$$
, and

1796

(ii)
$$P\left[\bigcap_{i=1}^{n} A_{i}\right] \geq \sum_{i=1}^{n} P\left[A_{i}\right] - (n-1).$$

(b) Given that (A) = $(\alpha) = (B) = (\beta) = (C) = (\gamma) = N/2$ and (ABC) = $(\alpha\beta\gamma)$, then show that

$$2(ABC) = (AB) + (AC) + (BC) - N/2.$$
(7,5)

(400)

Ô