This question paper contains 7 printed pages]

Roll No.

S. No. of Question Paper : 7336

Unique Paper Code

1

0

1

2

Y.

10

Name of the Paper : Calculus

Name of the Course

: Generic Elective for Honours :

Mathematics

: 32355101

Semester

1.

Duration : 3 Hours

Maximum Marks : 75

6/12/17

E

HC

(Write your Roll No. on the top immediately on receipt of this question paper.)

: 1

Do any five questions from each of the three Sections.

Each question is of five marks.

Section I

Use $\varepsilon - \delta$ definition to show that :

 $\lim_{x\to 4} (9-x) = 5.$

P.T.O.

7336

Find the asymptotes for the curve : 2.

$$f(x)=\frac{x^2-3}{2x-4}.$$

(2)

Find the Linearization L(x) of f(x) at x = a where :

$$f(x) = x + \frac{1}{x}$$
 at $a = 1$

For $f(x) = (x - 2)^3 + 1$ 4.

3.

Find the intervals on which f is increasing and the (*i*)

intervals on which f is decreasing.

Find where the graph of f is concave up and where it is (*ii*)

concave down.

Use L'Hôpital's rule to find : 5.

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

20. If

$$f(x, y) = x^2 - y^2$$
, $g(x, y) = 3xy + y^2x$

show that :

(i)
$$\nabla(fg) = f \nabla g + g \nabla f$$

(*ii*)
$$\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$$

If $w = x \sin y + y \sin x + xy$, show that $w_{xy} = w_{yx}$. 21.

2%

1

4

7

5,200

7336

0

19

- 16. Find the derivative of the function f at p_0 in the direction of \vec{A} where $f(x, y, z) = 3e^x \cos yz$, $p_0(0, 0, 0)$, $\vec{A} = 2\hat{i} + \hat{j} - \hat{k}$.
- 17. Find parametric equations for the line tangent to the curve of

intersection of the surfaces at the given point.

(

Surfaces : $x^3 + 3x^2y^2 + y^3 + 4xy - z^2 = 0$, $x^2 + y^2 + z^2 = 11$

Point : (1, 1, 3).

18. Find equations for the :

- (a) Tangent plane and
- (b) Normal line at the point p_0 on the given surface :

 $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ at the point $p_0(1, 2, 4)$.

19. Find the absolute maximum and minimum value of :

 $f(x, y) = 2 + 2x + 2y + x^2 - y^2$

on the triangular region in the first quadrant bounded by the

lines x = 0, y = 0, y = 9 - x.

Find the volume of the solid generated by revolving the region

between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.

7. Find the length of the curve :

6.

8.

9.

0

$x = t^3, y = \frac{3t^2}{2}, 0 \le t \le \sqrt{3}.$

Section II

State Limit comparison test. Using the limit comparison test,

show that :

$$\frac{3dx}{e^x+5}$$
 converges.

Identify the symmetries of the curve and then sketch the

graph of :

 $r^2 = \cos \theta$.

•

*)

1

Æ.

10. If $\vec{r}(t)$ is the position vector of a particle in space at time t,

4

find the time in the given interval when the velocity and

acceleration are orthogonal, where :

$$f(t) = (t - \sin t)\hat{i} + (1 - \cos t)\hat{j}, \quad 0 \le t \le 2\pi.$$

11. Find the area of the surface swept out by revolving the circle

 $x^2 + y^2 = 1$ about the x-axis.

12. Write the acceleration vector \vec{a} in the form of $\vec{a} = a_T \hat{T} + a_N \hat{N}$

at the given value of t without finding \hat{T} and \hat{N} for the position

vector given by :

$$\vec{r}(t) = \left(e^t \cos t\right)\hat{i} + \left(e^t \sin t\right)\hat{j} + \sqrt{2} e^t \hat{k}, \quad t = 0.$$

13. If

$$f(x, y) = \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

then find :

(i) $\lim_{(x, y) \to (0, 0)} f(x, y)$

(ii) Domain of f(x, y).

14. Show that the function :

 $f(x, y) = \frac{2x^2y}{x^4 + y^2}$

is not continuious at (0, 0).

Section III

15. If
$$w = (x + y + z)^2$$
; $x = r - s$, $y = \cos(r + s)$, $z = \sin(r + s)$,

find $\frac{\partial w}{\partial r}$ when r = 1, s = -1. Also draw the tree diagram.

7336

P.T.O.