St. No. 07 9. P. ' 596'6

•

:

Unique Paper Code Name of the Paper Name of the Course Semester Duration Maximum Marks-Instructions 2341301 Operating Systems (ER)⁻ BTech Computer Science III (ER) 3 Hours 75

Section A is Compulsory. Attempt any 4 questions from Section B. Parts of a question must be answered together.

SECTION A

1. a) Explain Dual Mode operation of Operating system.

b) Which of the following information should be privileged?

i) Issue a trap Instruction

ii) Read the clock

iii) Turn off interrupts

iv) Switch from user to kernel mode

c) Which system calls are used for copying a file from source file to destination?

d) What will be the output at line A and B in the following program?

main() { pid_t pid, pid1; pid = fork(); if (pid == 0) { pid1 = getpid(); printf("child: pid is %d", pid); /* line A */ printf("second child pid is %d", pid1); /* line B */ } }

return 0;

e) How are threads different from processes? Give an example where threads are more appropriate than processes.

f) Differentiate between the following
i) wait() and signal () operation
ii) Logical and Physical Address

g) Compare Round Robin and FCFS algorithms of CPU scheduling with a small example.

h) List four necessary conditions for deadlock to occur in the system.

2

2

3

2

2

3

2

2+2

4/12/17 (M)

i) Consider a logical address space of 64	pages	s of 1,024	words eac	h, mapped	onto a physical
memory of 32 frames.					

- i) How many bits are there in the logical address?
- ii) How many bits are there in the physical address?

j) Describe the actions taken by operating system when a page fault occurs.

k) Explain Sequential and Direct Access Methods for reading a file with suitable examples.

1) Consider a disk where blocks 2,3,4,5,7,9,11,18,19,20,21 are free blocks and rest are allocated. Constitute a free space bit vector to show this scheme.

m) What are the components of positioning time for reading the data from a disk.

n) Explain any two program threats.

SECTION B

2. a) Consider the following set of processes, with the length of CPU burst time given in milliseconds.

Process	Arrival Time	Burst Time	Priority	
P1	0	8	4	
P2	1	2	2	
P3	2	6	1 (Highest)	
P4	3	10	3	
D5	4	3	.5	

i) Draw Gantt charts illustrating the execution of these processes using

a) Priority based (preemptive)

b) Shortest job first

ii) What is the waiting time for P1 and P2 for each of the above algorithms?

iii) What is the turnaround time for P3 and P4 for each of the above algorithms?

b) What is a dispatcher? List the actions taken by the dispatcher.

a) Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use Memory.

2+2+2

4

3

4

2

2

2

Segment	ollowing segr	ment table	Service and the	
O	Base	Length		
0	200	600		
1	1000	200		
2	90	100		
3	1500	500		
What are the p	physical addre	esses for the following logical addresses? Justify your answer.		
i) 0, 500	ii) 2, 110)		
iii) 3, 50	iv) 1, 100)	4	
c) Explain the di	fference betw	een external and internal fragmentation.	2	
. a) What are race	a) What are race conditions? Explain with an example.			
b) Consider the f	ollowing page	e reference string.		
0, 0, 1, 2	2, 4, 3, 4, 2, 1	,4, 5, 6, 2, 1, 2, 3, 7, 7, 6, 3, 2, 1, 2, 3, 6		
Determine the	number of pa	age faults for		
i) Optim	al page replac	cement algorithm		
	page replace	ment algorithm		
ii) FIFO	P-0	frames and all of them are initially empty.	3+3	
ii) FIFO Assume that the	here are three	munico una un er men ure municip employ.	Contraction of the second	
ii) FIFO Assume that the	tere are three			
ii) FIFO Assume that the first of the first	disk drive ha	as 500 cylinders, numbered 0 to 499. The drive is currently servin	ng a	
ii) FIFOAssume that the first of the fir	disk drive hander 215, and	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending	ng a requests,	
ii) FIFOAssume that the field of the fie	disk drive ha nder 215, and , is: 206, 121	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending 1, 229, 280, 54, 161, 35, 152, 496, 368.	ng a requests,	
 ii) FIFO Assume that the second s	disk drive ha nder 215, and , is: 206, 121 the current he	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending 1, 229, 280, 54, 161, 35, 152, 496, 368. ead position, what is the total distance (in cylinders) that the disk	ng a requests, arm moves	
 ii) FIFO Assume that the same that the same that the same that a request at cyling in FIFO order Starting from to satisfy all the same same same same same same same sam	i disk drive hander 215, and r, is: 206, 121 the current he he pending re	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending 1, 229, 280, 54, 161, 35, 152, 496, 368 . ead position, what is the total distance (in cylinders) that the disk equests for each of the following disk-scheduling algorithms?	ng a requests, arm moves	
 ii) FIFO Assume that the first of t	i disk drive hander 215, and inder 215, and i, is: 206, 121 the current he he pending re	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending 1, 229, 280, 54, 161, 35, 152, 496, 368 . ead position, what is the total distance (in cylinders) that the disk equests for each of the following disk-scheduling algorithms?	ng a requests, arm moves	
 ii) FIFO Assume that the field of t	to disk drive hander 215, and or, is: 206, 121 the current he he pending re	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending 1, 229, 280, 54, 161, 35, 152, 496, 368 . ead position, what is the total distance (in cylinders) that the disk equests for each of the following disk-scheduling algorithms?	ng a requests, arm moves 3+3	
 ii) FIFO Assume that the first of t	and two Mul	as 500 cylinders, numbered 0 to 499. The drive is currently servin I the previous request was at cylinder 180. The queue of pending 1, 229, 280, 54, 161, 35, 152, 496, 368 . ead position, what is the total distance (in cylinders) that the disk equests for each of the following disk-scheduling algorithms?	ng a requests, arm moves 3+3 4	

for both sequential and random file access.

6