6502

6

 (v) Draw the logic diagram from the simplified expression and compare the total number of gates with the diagram of part II. 15/12/17(M)

[This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper	:	6502 HC				
Unique Paper Code	1	32341102				
(me of the Paper	:	Computer System Architecture				
Name of the Course	:	B.Sc. (H) Computer Science				
Semester	:	Ι				
Duration : 3 Hours		Maximum Marks: 75				
 Instructions for Candidates Write your Roll No. on the top immediately on receipt of this question paper. Question No. 1 is compulsory. Attempt any 4 questions from Question 2 to Question 7. Parts of a question must be answered together. 						

- (a) Convert the following numbers with the indicated bases to decimal: (3×2=6)
 - (i) (7340)₈
 - (ii) (230)₆
 - (iii) (123)₄

(1400)

C

*

C

11

•

P.T.O.

2

- (b) Give two instructions required to set E=1 in basic computer.(2)
- (c) Differentiate between isolated and memory mapped I/O. (4)
- (d) Convert the following from infix to Reverse Polish Notation (RPN): (2×2=4)
 - (i) (A + B) * [C * (D + E) + F]
 - (ii) (A * B) + [A * (B * D) + (C * E)]
- (e) Draw a block diagram of 4-to-1 line Multiplexer. (4)

OR

(For Visually handicapped Students only)

Explain 4-to-1 line Multiplexer.

- (f) Explain D and T flip-flops with the help of its characteristics table.
- (g) Define Pipelining with an example. (2+1=3)
- (h) Write micro-operations for following memory reference instructions: (2×2=4)

6502

£

¥ J

.

×

The

710

6. (a) Define the following using block diagrams : (4)

5

- (i) Direct Instruction
- (ii) Indirect Instruction
- (b) What is associative memory? Explain with the help of a block diagram. Give the application of Associative memory.
- 7. Given the Boolean function $(5 \times 2 = 10)$

$$\mathbf{F} = \mathbf{x}\mathbf{y}'\mathbf{z} + \mathbf{x}'\mathbf{y}'\mathbf{z} + \mathbf{x}\mathbf{y}\mathbf{z}$$

- (i) List the truth table of the function.
- (ii) Draw the logic diagram using the original Boolean expression.
- (iii) Simplify the algebraic expression using Boolean algebra.
- (iv) List the truth table of the function from the simplified expression and show that it is the same as the truth table in part I.

6502

3

- (i) STA: store AC
- (ii) BUN: Branch unconditionally.
- (i) Construct a 3×8 decoder using 2×4 decoders. (4)

OR

(For Visually handicapped Students only)

Explain the construction of 3×8 decoder using 2×4 decoders.

- (a) Give the truth table of full adder. Derive the Boolean function of a full adder using Karnaugh Map. Draw its circuit diagram.
 (6)
 - (b) Explain Direct Memory Access (DMA) I/O techniques with the help of block diagram. (4)
 - 3. (a) Show the step-by-step multiplication process using Booth's Algorithm for multiplicand = 10111 and multiplier = 10001. (5)
 - (b) Draw a space time diagram for a four segment pipeline showing the time it takes to process nine tasks.

P.T.O.

(For Visually handicapped Students only)

Explain Arithmetic Pipeline and Instruction Pipeline with example.

- (a) Draw a 16-bit common bus diagram of basic computer. Explain its functioning. (6)
 - (b) The following control inputs are active in the common bus system of a basic computer. For each case, specify the register transfer that will be executed during the next clock transition. (4)

	S ₂	S1	S0	LD of register	Memory	Adder
I.	1	1	1	IR	Read	-
II.	1	1	0	PC	-	-
III.	1	0	0	DR	Write	-
IV.	0	0	0	AC	-	Add

 (a) Define fetch, decode and execute phases of the instruction cycle in a basic computer. State the sequence of micro-operations using register transfer statements.

(6)

(b) Formulate a mapping procedure that provides eight consecutive microinstructions for each. The operation code has six bits and the control memory has 2048 words. (4)