		24 (S) 17 (Evening)
atte di s	(4) 3019	This question paper contains 4 printed pages]
. (a)	State and prove Cauchy's nth root test for an infinite	Roll No.
	series. 6	S. No. of Question Paper : 3019
(b)	Test for convergence the following series : n^2	Unique Paper Code : 62354443 GC-4
	(i) $\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 5}$	Name of the Paper : Analysis
	(<i>ii</i>) $\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$. 6	Name of the Course : B.A. (Prog.) Mathematics
(c)	State (without proof) D'Alambert's ratio test for an	Semester : IV
	infinite series. Test for convergence the series :	Duration : 3 Hours Maximum Marks : 75
	$\frac{1}{5} + \frac{2!}{5^2} + \frac{3!}{5^3} + \frac{4!}{5^4} + \dots $	(Write your Roll No. on the top immediately on receipt of this question paper.)
. (a)	Define an alternating series. State Leibnitz's test for an	This question paper has six questions in all.
	alternating series. Test for convergence the series :	Attempt any two parts from each question.
	$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \dots $ 6	All questions are compulsory.
	2 4 0	Marks are indicated against each part of the questions.
(b)	Test for convergence the following series :	1. (a) Which of the following sets are bounded below, which
	(i) $\sum_{n=1}^{\infty} \frac{(-1)^n \sin n\alpha}{n^3}$, α being real	are bounded above and which are neither bounded
		below nor bounded above.
	(<i>ii</i>) $\sum_{n=1}^{\infty} \frac{n^{n^2}}{(n+1)^{n^2}}$. 6	(<i>i</i>) $\{-1, -2, -3, -4, \dots, -n, \dots\}$
(c)	Prove that every monotonically increasing function f on	(<i>ii</i>) $\{-1, 2, -3, 4, \dots, (-1)^n n, \dots\}$
	[a, b] is Riemann integrable on $[a, b]$. 6	(<i>iii</i>) $\{2, \frac{3}{2}, \frac{4}{3}, \dots, \left(\frac{n+1}{n}\right), \dots\}$
		$(iv) \{3, 3^2, 3^3, \dots, 3^n, \dots\}$
019	4 1000	P.T.O.

3019

1

1

42

3.

(a)

(c)

4.

(v)
$$\{1, \frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}, \dots\}$$

- $(vi) \{-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots, \frac{(-1)^n}{2}, \dots\}$ 6.5
- Define supremum and infimum of a non-empty bounded (b) set. Suppose A and B are two non-empty subsets of R satisfying the property :

 $a \leq b, \forall a \in A \text{ and } \forall b \in B.$

Prove that :

2.

 $sup(A) \leq inf(B)$. 6.5

- State Bolzano Weirstrass theorem for sets. Show by an (c) example that the conditions in this theorem cannot be relaxed. 6.5
- Prove that every continuous function on a closed (a) interval is bounded. 6.5
- Show that the function $f(x) = \frac{1}{x}$ is not uniformly (b) continuous on]0,∞[. 6.5
- Define an open set and prove that the union of an (c) arbitrary family of open sets is an open set. 6.5

3) Define a convergent sequence and a bounded sequence.

Show that the sequence $\langle a_n \rangle$ defined by :

 $a_n = (-1)^n, \forall n$

is bounded but not convergent.

6.5

Show that the sequence $\langle a_n \rangle$ defined by : (b)

$$a_1 = 1, \quad a_{n+1} = \sqrt{2 + a_n}, \ \forall \ n \ge 1$$

is bounded and monotonic. Also find $\lim_{n\to\infty} a_n$. 6.5 State and prove Cauchy convergence criterion for sequences. 6.5

- Prove that every monotonically increasing and bounded (a)above sequence converges. 6
 - If $< a_n >$ and $< b_n >$ are sequences of real numbers such *(b)* that :
 - $\lim_{n\to\infty} a_n = a, \quad \lim_{n\to\infty} b_n = b$

then prove that :

 $\lim_{n\to\infty} (a_n + b_n) = (a+b).$

(c) Show that :

$$\lim_{n\to\infty}\frac{2^{3n}}{3^{2n}}=0.$$

P.T.O.

6

6