			30/5/17 Bre.					
	(4)	2002	This question paper contains 4+2 printed pages]					
4. (4	a) Find the rational roots of the equation :	6½	Roll No.					
	$x^4 - x^3 - 19x^2 + 49x - 30 = 0.$		S. No. of Question Paper : 2002					
(/	b) Solve the equation :		Unique Paper Code : 62351201 GC-4					
	$27x^3 + 42x^2 - 28x - 8 = 0,$	O *	Name of the Paper : Algebra					
			Name of the Course : B.A. (Prog.) Discipline Course					
	the roots being in G.P.	61/2	Semester : II					
(c) If α , β , γ , be the roots of the equation :	6½ 0	Duration : 3 Hours Maximum Marks : 75					
	$x^{3} + px^{2} + qx + r = 0, (r \neq 0),$		(Write your Roll No. on the top immediately on receipt of this question paper.)					
	find the value of :		Attempt any two parts from each question.					
	(<i>i</i>) $\sum (\beta + \gamma)^2$		1. (a) Prove that the set V of all ordered triples of real numbers of the form $(x, y, 0)$ under the operations \oplus and \odot defined					
	(<i>ii</i>) $\sum \alpha^{-2}$.	E.	by :					
5. (a)	Let n be a positive integer. Prove that the c	ongruence	$(x, y, 0) \oplus (x', y', 0) = (x + x', y + y', 0)$					
	class $[a]_n$ has a multiplicative inverse in Z_n if	and only	$c \odot (x, y, 0) = (cx, cy, 0)$					
	if $(a, n) = 1$.	.61/2	forms a vector space over R . 6					

2002

61/2

Solve the system of linear equations :

x - 3v + z = -12x + y - 4z = -16x - 7y + 8z = 7.

3. If (a)

(c)

cosa	7 2005	p + 3	cosy	2.	, –	sina	T	25mp) T	Ssiny,
		Carlo Siles								
										6.43,283
prove	that :									

2aaaB + 2aaaa = 0 = aina + 2ainB + 2aina

 $\cos 3\alpha + 8\cos 3\beta + 27\cos 3\gamma = 18\cos(\alpha + \beta + \gamma)$

 $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\gamma = 18\sin(\alpha + \beta + \gamma).$

Prove th (b)

$$\tan 5\theta = \frac{5\tan\theta - 10\tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + \tan^4\theta}.$$

 $\cos\theta\sin\theta + \cos^2\theta\sin2\theta + \dots + \cos^n\theta\sin^n\theta$,

where $\theta \neq k\pi$.

$$\tan 5\theta = \frac{5\tan\theta - 10\tan^3\theta + \tan^3\theta}{1 - 10\tan^2\theta + \tan^4\theta}$$

$$\begin{bmatrix} 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$$

-1

6

2

then $c \odot u$ is in W.

Let V be a vector space with operators \oplus and \odot . Let

W be a non-empty subset of V. Prove that W is a subspace

If u, v are vectors in W, then $u \oplus v$ is in W

If c is any real number and u is any vector in W,

Define basis of a vector space V. Check whether the set

 $\{(3, 2, 2), (-1, 2, 1), (0, 1, 0)\}$ forms basis for \mathbb{R}^3 ? 6

of V if and only if the following conditions hold :

2002

•

6 ()

0

0

á

to its normal form and hence determine its rank. 61/2

Verify that the matrix : *(b)*

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

satisfies its characteristic equation and hence obtain A⁻¹. 61/2

P.T.O.

6

6

6

Reduce the matrix :

1 . 3

(b)

(c)

(a)

2.

(i)

(ii)

(b) Prove that the set $S = \{0, 2, 4\}$ is a subring of the ring

2002

6

6

900

Z₆ of integers modulo 6.

(c) Prove that the rigid motions of an equilateral triangle

yields the group S₃.

(b) Consider the following permutations in S_7 :

2002

61/2

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$

Compute the following products :

(*i*) τ⁻¹στ

(*ii*) $\tau^2 \sigma$.

(c)

Prove that the set Q⁺ of all positive rational numbers is an abelian group under the binary operation * defined by $a * b = \frac{ab}{3}$.

Ъ.

(a) Let $G = GL_2(R)$. Prove that :

$$\mathbf{D} = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}, ad \neq 0 \right\}$$

is a subgroup of G.

6